median_abs_deviation¶
- xarray_einstats.stats.median_abs_deviation(da, dims=None, *, center=None, scale=1, nan_policy=None, **kwargs)[source]¶
Wrap and extend
scipy.stats.median_abs_deviation.Usage examples available at Intro to the stats module.
All parameters take the same values and types as the scipy counterpart with the exception of
scale. Herescalecan also takeDataArrayvalues in which case, broadcasting is handled by xarray, as shown in the example.Examples
Use a
DataArrayasscale.import xarray as xr from xarray_einstats import tutorial, stats ds = tutorial.generate_mcmc_like_dataset(3) s_da = xr.DataArray([1, 2, 1, 1], coords={"chain": ds.chain}) stats.median_abs_deviation(ds["mu"], dims="draw", scale=s_da)
<xarray.DataArray (chain: 4, team: 6)> Size: 192B 0.3468 0.4532 0.5054 0.876 0.6265 0.7342 ... 0.4382 0.5668 0.7103 0.2494 0.3485 Coordinates: * chain (chain) int64 32B 0 1 2 3 * team (team) <U1 24B 'a' 'b' 'c' 'd' 'e' 'f'
Note that this doesn’t work with the scipy counterpart because s_da can’t be broadcasted with the output:
from scipy import stats stats.median_abs_deviation(ds["mu"], axis=1, scale=s_da)
--------------------------------------------------------------------------- ValueError Traceback (most recent call last) Cell In[2], line 2 1 from scipy import stats ----> 2 stats.median_abs_deviation(ds["mu"], axis=1, scale=s_da) File ~/checkouts/readthedocs.org/user_builds/xarray-einstats/envs/82/lib/python3.12/site-packages/scipy/stats/_stats_py.py:3396, in median_abs_deviation(x, axis, center, scale, nan_policy) 3393 med = np.expand_dims(center(x, axis=axis), axis) 3394 mad = np.median(np.abs(x - med), axis=axis) -> 3396 return mad / scale File ~/checkouts/readthedocs.org/user_builds/xarray-einstats/envs/82/lib/python3.12/site-packages/xarray/computation/arithmetic.py:84, in SupportsArithmetic.__array_ufunc__(self, ufunc, method, *inputs, **kwargs) 75 raise NotImplementedError( 76 "xarray objects are not yet supported in the `out` argument " 77 "for ufuncs. As an alternative, consider explicitly " 78 "converting xarray objects to NumPy arrays (e.g., with " 79 "`.values`)." 80 ) 82 join = dataset_join = OPTIONS["arithmetic_join"] ---> 84 return apply_ufunc( 85 ufunc, 86 *inputs, 87 input_core_dims=((),) * ufunc.nin, 88 output_core_dims=((),) * ufunc.nout, 89 join=join, 90 dataset_join=dataset_join, 91 dataset_fill_value=np.nan, 92 kwargs=kwargs, 93 dask="allowed", 94 keep_attrs=_get_keep_attrs(default=True), 95 ) File ~/checkouts/readthedocs.org/user_builds/xarray-einstats/envs/82/lib/python3.12/site-packages/xarray/computation/apply_ufunc.py:1267, in apply_ufunc(func, input_core_dims, output_core_dims, exclude_dims, vectorize, join, dataset_join, dataset_fill_value, keep_attrs, kwargs, dask, output_dtypes, output_sizes, meta, dask_gufunc_kwargs, on_missing_core_dim, *args) 1265 # feed DataArray apply_variable_ufunc through apply_dataarray_vfunc 1266 elif any(isinstance(a, DataArray) for a in args): -> 1267 return apply_dataarray_vfunc( 1268 variables_vfunc, 1269 *args, 1270 signature=signature, 1271 join=join, 1272 exclude_dims=exclude_dims, 1273 keep_attrs=keep_attrs, 1274 ) 1275 # feed Variables directly through apply_variable_ufunc 1276 elif any(isinstance(a, Variable) for a in args): File ~/checkouts/readthedocs.org/user_builds/xarray-einstats/envs/82/lib/python3.12/site-packages/xarray/computation/apply_ufunc.py:310, in apply_dataarray_vfunc(func, signature, join, exclude_dims, keep_attrs, *args) 305 result_coords, result_indexes = build_output_coords_and_indexes( 306 args, signature, exclude_dims, combine_attrs=keep_attrs 307 ) 309 data_vars = [getattr(a, "variable", a) for a in args] --> 310 result_var = func(*data_vars) 312 out: tuple[DataArray, ...] | DataArray 313 if signature.num_outputs > 1: File ~/checkouts/readthedocs.org/user_builds/xarray-einstats/envs/82/lib/python3.12/site-packages/xarray/computation/apply_ufunc.py:818, in apply_variable_ufunc(func, signature, exclude_dims, dask, output_dtypes, vectorize, keep_attrs, dask_gufunc_kwargs, *args) 813 elif vectorize: 814 func = _vectorize( 815 func, signature, output_dtypes=output_dtypes, exclude_dims=exclude_dims 816 ) --> 818 result_data = func(*input_data) 820 if signature.num_outputs == 1: 821 result_data = (result_data,) ValueError: operands could not be broadcast together with shapes (4,6) (4,)